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Introduction

Modeling is one of the most fundamental processes of the human
mind.  Yet it is often misunderstood in ways that seriously limit our
ability to function coherently and effectively in the world.  The use of
inappropriate models (or the inappropriate use of modeling itself) is
responsible for countless disasters of personal, technological, and
historical proportions.  Modeling is the quintessential human conceptual
tool.  Yet it is rarely examined from a theoretical point of view and
therefore rarely mastered.

This chapter attempts to define modeling precisely.  It surveys the kinds of
models human beings use and discusses their motivations, advantages, and
limitations.  It places simulation in this context and surveys various kinds
of computerized simulation.  It then discusses Artificial Intelligence in
the broadest terms, highlighting a few of its most relevant aspects, and
attempts to show how AI can contribute to−−and how it depends on−−modeling.
Finally, it suggests that the traditional view of simulation is too narrow
and should be expanded to encompass more of modeling, leading to
"Knowledge−Based Simulation".  This is illustrated in terms of ongoing
research at The RAND Corporation.

Overview of Modeling

Modeling in its broadest sense is the cost−effective use of something in
place of something else for some purpose.  It allows us to use something
that is simpler, safer, or cheaper than reality instead of reality for some
purpose.  A model represents reality for the given purpose; the model
is an abstraction of reality in the sense that it cannot represent all
aspects of reality.  This allows us to deal with the world in a simplified
manner, avoiding the complexity, danger and irreversibility of reality.

Modeling underlies our ability to think and imagine, to use signs and
language, to communicate, to generalize from experience, to deal with the
unexpected, and to make sense out of the raw bombardment of our sensations.
It allows us to see patterns, to appreciate, predict, and manipulate
processes and things, and to express meaning and purpose.  In short, it is
one of the most essential activities of the human mind.  It is the
foundation of what we call intelligent behavior and is a large part of what
makes us human.  We are, in a word, modelers: creatures that build and
use models routinely, habitually−−sometimes even compulsively−−to face,
understand, and interact with reality.

Using an inappropriate model to deal with reality can do considerable harm.
How many patients were killed by Medieval blood−letting who might otherwise
have recovered?  How many children have been locked into Procrustean roles by
models like Girls aren’t good at math or Boys aren’t intuitive?  How many
computer programs do the wrong thing correctly?  These are all cases of using
incorrect or inappropriate models.  There are even cases where using any model
at all is inappropriate.  For example, relating to someone in terms of a model
precludes the comprehension and appreciation of the richness and
unpredictability that distinguish living beings from rocks and tractors.

In order to avoid inappropriate choices and uses of models, it is vital to
formulate a clear definition of what a model really is, what constitutes a



good, appropriate model, and how to judge when using a particular model (or
any model) is justified.

Other Models of Modeling

Before developing our own definition, it is useful to discuss some of the
literature on modeling.  The subject is as broad as human intellectual
endeavor itself, since modeling is the intellect’s tool of choice.  At one
extreme lie fundamental points of view on how we approach reality, tracing
their roots to Plato and Aristotle.  For example, Kant contends that reality
in and of itself (the "noumenon") is unknowable, and that the "forms of our
perception" constitute what is effectively an inherent and unavoidable
modeling process (though he does not use this term) that separates us from
the noumenon [25].  A survey of this subject would amount to a synopsis of
much of philosophy, which is beyond the scope of this chapter.

At another extreme, formal model theory in mathematical logic defines
the semantics of a propositional language as a "model" that specifies what
can be concluded validly from what [13].  Model theory (despite its name) is
somewhat esoteric to the discussion at hand, in that it focuses on formal
properties of one particular kind of model (i.e., logical) rather than on
modeling as a whole [49].

Of greater relevance is the literature on the application of specific
modeling techniques in application areas like systems analysis and decision
support.  These discussions tend to be concrete enough to be relevant to
real−world modelers while being abstract enough to provide insight into
modeling in general.

From this applied perspective, modeling is often seen as a way of gaining
control over the world [47], or of making decisions or answering questions
about the world [7,11,14,18,23,33,35,39,43,46].  It is widely recognized that
the purpose of a model must be understood before the model can be discussed
[12,33].  The purposes to which models may be put are frequently categorized
as being either descriptive (describing or explaining the world) or
prescriptive (prescribing optimal solutions to problems) [14,34,39].
Prescriptive uses of a model are sometimes further distinguished from
normative uses (such as identifying feasible goals or standards [18])
and from idealization (allowing the construction of hypothetical, ideal
entities that illuminate real−world phenomena [21]).  Specific uses of models
include projection (conditional forecasting), prediction (unconditional
forecasting), allocation and derivation (e.g., of expected demands for
resources or services) [18], as well as hypothesis−testing, experimentation,
and explanation [21].

Models are generally assumed to have an analogous or imitative relationship
to some real−world phenomenon or system, though this assumption is often
only implicit.  Even where explicit, this assumption usually remains vague
and intuitive [18,33,46].  Since most work in modeling is carried out for a
particular purpose within a particular application domain, most discussions
touch only lightly on abstract modeling issues before elaborating specific
techniques. 

Some writers [18,39,46,50] point out that models can be characterized in
many alternative ways, but most suggest categorizations specific to the
application areas under consideration.  Models may be characterized in
terms of their form, their relationship to reality, their purpose, the way
they interact with their users, the way they are used, their assumptions
about the certainty of their data (i.e., deterministic vs. probabilistic
models), their treatment of time (static vs. dynamic and continuous vs.
discrete−state models), the kinds of questions they can answer, the kinds of
answers they give, etc.

It is tempting to try to describe models in terms of their form, but the
definition of form is subjective.  For example, models can be described as
physical or symbolic; however, physical (i.e., material) models are
sometimes divided into "iconic" (or "schematic" [18]) and "analog" models,
whereas symbolic models may be thought of either as strictly mathematical
[7,14,18,34] or as non−material (i.e., including conceptual, or "mental",
models) [21,33,39].  

Furthermore, the physical/symbolic dichotomy is sometimes extended to
include disparate terms, thereby subverting a simple material/immaterial



interpretation.  For example, simulation [14] or role−playing (i.e.,
"gaming") [18] may be added to the categories "physical" and "symbolic",
producing heterogeneous classification schemes.  In addition, many
terms have multiple meanings in the literature; for example, "iconic" may
include physical models of houses, engineering drawings, and maps [7,27,34],
or it may be restricted to the former meaning (physical miniatures), while a
different term (e.g., "analogue" [24], or "physical" model [18]) is used to
include things like maps.  On the other hand, the term "analogue" may be
used to denote a physical model that uses analogue processes like water or
electrical flow to model dynamic phenomena [7,27,34].

Mathematical models can themselves be classified as continuous vs. discrete
and as deductive (proceeding from a priori knowledge or axioms), inductive
(generalizing from observed behavior), or pragmatic (relying on a means−end
oriented engineering approach) [47].  Analytical techniques (for which
closed−form solutions exist, permitting optimization) are sometimes contrasted
to numerical techniques [7].  Because of their formality, analytical
techniques are seen as capable of representing only limited aspects of the
real world [46].  Explicit computerized models (as compared to implicit mental
models) are seen as having potential advantages including rigor,
accessibility, comprehensiveness, logic, and flexibility [33,39].

Mathematical modeling encompasses the use of qualitative interaction (or
"impact") matrix techniques like Leopold matrices, as well as numerical
optimization techniques [22].  In addition to optimization (or "mathematical
programming") based on network theory, PERT, calculus, etc., there are a
wide range of stochastic techniques drawn from areas including queuing
theory and inventory theory, as well as general statistical techniques
including multivariate analysis (factor, principle component, discriminate
analysis, etc.), statistical inference and decision theory [34].  Finally,
no discussion of real−world modeling can ignore the issues of data
availability, reliability, quality and relevance [18,22,23].

There is little consensus on how simulation relates to modeling, or even
what the word "simulation" means.  It is either thought of as (1) a way of
using models that is more general than any particular kind of model
[14,18,23,27,39] or (2) a specialized kind of model that makes use of a
particular subset of the available modeling techniques [7,9,22,24,34].
Nevertheless, there is some consensus that simulation is a dynamic,
imitative kind of modeling [9,14,18,24,27] that tends to be a technique of
"last resort" used to model phenomena that are poorly understood or for
which more rigorous techniques are unavailable [9,22].

The following discussion attempts to synthesize a coherent definition of
modeling and simulation.

Definition of Modeling

Precisely what do we mean by modeling?  Modeling is a way of dealing with
things or situations that are too "costly" to deal with directly (where "cost"
is interpreted in the broadest sense).  Any model is characterized by three
essential attributes:

  1) REFERENCE: It is of something (its "referent").

  2) PURPOSE: It has some intended purpose with respect to its referent.

  3) COST−EFFECTIVENESS: It is more cost−effective to use the model
for this purpose than to use the referent itself.

To model, then, is to represent a particular referent cost−effectively
for a particular purpose. ( Verbal forms like "modeling" and "to model" are
used here to denote the entire enterprise of building and using models.  (Some
authors reserve these forms for the process of developing a model as opposed
to using one [23]; however, this usage precludes saying that a model "models"
its referent.) Phrases like "model building" will be used here to achieve the
above distinction.

The referent and purpose of a model must be well−defined; otherwise all
three criteria become meaningless.  For example, a video game need not
represent anything real; there may be some video games based on models
(e.g., flight simulators), but most are "pseudo−models".  The notion of a
"game" implies an incidental relationship to reality, or the



fabrication of a "pseudo−reality".  It is tempting to "back−project" a
pseudo−model into a corresponding pseudo−reality, thereby becoming convinced
that the pseudo−model is a bona fide model [44].  However, in addition
to being misleading, this process is also indeterminate, since the modeling
abstraction cannot be reversed deterministically.  Even if a purpose and
cost−effectiveness criterion are fabricated for a pseudo−model, the fact
that it can be back−projected into any number of equally possible
pseudo−realities makes it worthless as a model.

The referent of a model need not actually exist, but it must be objectively
testable in order to serve as "reality" for the model.  It is reasonable to
model a fictitious or hypothetical reality (for example, the psyche of
Oedipus, the terrain of Camelot, or the flight characteristics of a proposed
airplane), but only if the referent has some objective form against which
the validity of the model can be verified.

The purpose of a model may include comprehension or manipulation of its
referent, communication, planning, prediction, gaining experience,
appreciation, etc.  In some cases this purpose can be characterized by the
kinds of questions that may be asked of the model.  For example, prediction
corresponds to asking questions of the form "What−if...?" (where the user asks
what would happen if the referent began in some initial state and behaved as
described by the model).  This is analogous to applying "if−then" rules in the
forward direction (i.e., "forward chaining").

On the other hand, goal−directed questions are concerned with finding
an initial state or condition of the referent (along with constraints or
conditions of the model itself) that can lead to a given result.  This is
analogous to the use of if−then rules in the backward direction (i.e.,
"backward chaining") or to mathematical optimization techniques.  

There are also definitive questions that ask whether certain states,
conditions, or actions are ever possible for the referent.  These
correspond to proving assertions about the referent by using the model.
Finally, there are explanatory questions that seek to explain the
behavior of the referent by showing how some state is reached or what the
referent’s reasons are for acting in a certain way.

Even an exhaustive list of such questions could not characterize all
possible purposes of a model.  A model may be intended for appreciation of
its referent, in which case its user may not ask any questions of it at all. 
The purpose of a model is constrained only by the ingenuity of its builder
and user.

It is impossible to evaluate−−or intelligently use−−a model without
understanding its purpose.  Calling something "a model" of its referent
without further qualification makes it impossible to know which aspects of the
referent are being modeled and which are not.  No model can faithfully
reproduce all aspects of its referent (since only the referent itself
can do this).  Therefore, without specifying its intended purpose, it is
almost impossible to prevent using a model for purposes for which it may be
highly inappropriate.  This can have dire consequences if decisions and
actions are based on false predictions or understanding.  Similarly, it is
imperative to have a clear statement of the intended purpose of a model before
trying to build it: otherwise it is impossible to decide which aspects of the
referent must be modeled and with what fidelity.

Yet knowing a model’s purpose is not enough.  It must also be more
cost−effective to use the model for the given purpose than to use its
referent, either because it is impossible to use the referent directly or
because using the referent would be dangerous, inconvenient or (generally)
expensive in some relevant coin. This cost−effectiveness criterion is
central to the notion of modeling: without it, there is never any reason to
use a model in place of its referent.  The cost−effectiveness criterion of a
model must be known in order to judge the model’s value.

Judging the cost−effectiveness of a model requires answering two questions:
"What does it claim to buy?" and "Does it buy this?".  In addition, building a
model requires asking two prior questions: "Is this the most appropriate thing
to be bought by the proposed model?" (i.e., "Is this the most appropriate
cost−effectiveness criterion on which to base the proposed model?") and "Will
the model’s cost−effectiveness pay for the cost of building it in the first
place?".



The cost−effectiveness criterion is a kind of Occam’s Razor for modeling:
it allows models of equal power to be compared and evaluated.  However,
whereas Occam’s Razor applies the criterion of simplicity (or
"parsimony"), here the costs to be compared and evaluated are stated
explicitly as part of the cost−effectiveness criterion.  Since the criterion
is not necessarily simplicity, it follows that a model is not
necessarily simpler than its referent.  A model may actually be more
complex than its referent, if in so doing it satisfies some valid
cost−effectiveness criterion other than simplicity.  

Since a model cannot be identical to its referent, it is always an
abstraction of its referent, in the sense that it can never be
completely faithful to it. The fact that a model may be more complex than
its referent implies that abstraction does not necessarily result in
simplification, as is usually assumed.  Although we sometimes appear to
model something by using the thing itself, this always involves using the
referent in some unusual way or restricted mode that offers some advantage
over using it directly (an example of this is the modeling of human behavior
by asking human subjects how they would act in hypothetical situations).

The criteria of purpose and cost−effectiveness for that purpose together
determine which features of the referent must be modeled (and with what
accuracy) and which features can be ignored.  These criteria provide a
complete functional characterization of a model.  In addition, they determine
a number of key "pragmatic" characteristics such as who the intended users of
the model are and how the results of using the model must be presented in
order to be usable (i.e., understandable) by those users.  These can be
thought of as interface issues: for a model to fulfill its stated purpose
cost−effectively, it must be appropriately useful to and usable by its
intended users.

There is also the pragmatic issue of how a model is to be maintained.  This
depends on how likely the model is to change and evolve over its lifetime, how
extensible it needs to be, and who will be maintaining it.  Accounting
properly for these maintenance issues requires that the purpose of the model
allows for its evolution over its entire projected lifetime and that its
cost−effectiveness criterion considers the cost of maintaining it over this
lifetime.

The above definition clarifies what are often blurred distinctions: namely,
those among models, symbols and representations.  A representation can be any
use of something in place of something else: it need not (though it may) have
a purpose or a cost−effectiveness criterion.  That is, a model is a special
kind of representation.  Similarly, names and symbols are representations but
are not models.

To some extent these distinctions depend on how something is used.  A model
may be used degenerately as a symbol for the thing it models:  for example,
the formula E=mc\** is a mathematical model for the relationship between
energy and mass, but the formula has become a popular symbol for all of
Einstein’s work and even modern physics as a whole.  Similarly, an object
may be usable as a model whether or not it was intended as one. The
megalithic structure at Stonehenge may be interpreted as an astronomical
model [19], but it is unlikely that that was its intended purpose [10].

Examples of Different Types of Models

There are many ways of modeling a given thing or phenomenon, including
physical analogs, closed−form mathematical representations, conceptual
metaphors, linguistic formalisms, simulation, and many others.  A given model
(of any of these types) has strengths and weaknesses depending on its
fidelity, utility, "computational cost" (i.e., the amount of work required to
use the model), and pragmatic considerations including its suitability for
various kinds of users and its maintainability.  Whereas a given type of model
may tend to have certain characteristics (for example, physical analogs tend
to be more static and harder to modify than mathematical models), there are no
invariant rules about which types of model display which strengths and
weaknesses.  Some examples will make this more concrete.

A street map is a physical analog that provides some kinds of information
(such as connectivity) but usually not others (such as elevation). It can
answer some kinds of questions easily (such as "Can I get from A to B?")



while others (such as "How long is the shortest route from A to B?") may
require considerable computation [3].  It is used for comprehension,
communication and planning; its cost−effectiveness derives from the
difficulty of comprehending the layout of a city directly.  It is relatively
inflexible and hard to "maintain", either by the cartographer who creates it
or by its user, who can at most add annotations to it.

Mathematical models come in many flavors.  The darling of modern physics is
the theory called Quantum Electrodynamics ("QED"), which describes the
quantum mechanics.  This model has achieved unprecedented accuracy of
prediction over a range of dozens of orders of magnitude in scale [37].
However, it is relatively inaccessible and incomprehensible to all
but physicists, and the cost of using it is relatively high even for the
most mathematically astute and computationally well−armed.

Formal logic has made great strides in recent years, with the advent of
efficient algorithms for the constructive proof of certain restricted
classes of assertions [4,40].  This has resulted in a new generation of
computer programming languages, typified by Prolog [48].  Models based on
these formalisms have a compelling similarity to the "natural logic" of
everyday language.  For example, it is easy to write a Prolog program that
defines intuitive models of the relationships in a family, and then to ask
questions like "Who are John’s sisters, cousins, and aunts?". 
Unfortunately, such models are relatively opaque to all but Prolog
programmers.

Conceptual metaphors are models consisting of ideas that shape the way we
think about reality [16].  They introduce the intentional fiction that the
referent is like some other better−known object or phenomenon.  For example,
the development of mechanical clocks had a profound influence on literary,
philosophical and religious models of the universe.  Similarly, the
simplistic view of the atom as a miniature solar system provides
comprehension, though it has poor predictive power.  Closer to home, the
metaphor of the human brain as a computer is one of the driving motivations
for AI. Conceptual models like these form the paradigms that shape the
thought of science and society as a whole [31].

Simulation is a form of modeling whose purpose is usually comprehension,
planning, prediction and manipulation.  It can be defined broadly as a
behavioral or phenomenological approach to modeling: that is, a simulation is
an active, behavioral analog of its referent.  The essence of simulation is
that it unfolds over time.  It models sequences and (possibly) timings of
events in the real world.  Simulation is a process in which a model of any
kind is used to imitate (some aspect of) the behavior of its referent.
Simulation is a kind of modeling rather than a kind of model: it denotes an
action (process) rather than a thing.  However, the term is often used as a
modifier of "model" (i.e., "simulation model"), with the word "model" itself
often being omitted in such cases (for example, when speaking of a "weather
simulation"). Nevertheless, what is meant in these cases is the use of a model
as a simulation.

Simulation is generally used to answer "What−if...?" questions.  It
can also be used to answer questions of causality by generating a sequence
of events from which one can attempt to infer what caused what.  As
traditionally conceived, simulation works only in this "forward" direction: 
the user "winds it up" and lets it run, to see what happens.

In some cases, one type of model may evolve or transmute into a different
form.  For example, there is some evidence that writing may have evolved
from the use of physical analogs [42].  This putative evolution highlights
the difficulty of distinguishing too sharply between physical analogs and
symbols.

Choosing Among Types of Models

The three criteria of reference, purpose and cost−effectiveness provide
complete functional and pragmatic requirements for a model.  But given a
purpose with respect to some reality and a measure of cost−effectiveness,
what determines which type of model should be used?

Most of the tradeoffs among the types are in terms of pragmatic issues
(flexibility, extensibility, and suitability to different user groups)
rather than among their functional abilities to fulfill various purposes



cost−effectively.  Furthermore, these pragmatic tradeoffs are often
relative; for example, differential equations may be comprehensible to
mathematicians, whereas intricate physical analogs may be more
comprehensible to those with well−developed mechanical intuition. Conceptual
metaphors have the advantage that they are immaterial and therefore require
no apparatus for their use; in addition, they tend to be relatively simple
and therefore accessible to a large community of users. Yet the lack of
substance limits their computational power and may make them
inaccessible to users who find abstractions hard to grasp.  In
contrast, physical analogs are highly tangible, but therefore have limited
accessibility and may be difficult to modify and maintain.

Even with strong pragmatic constraints, the choice of which type of model to
use is rarely determined by the requirements.  The preferences and
convenience of the model builders and users may ultimately dictate one type
over another, but there are often several viable alternatives.

The following sections concentrate on one particular form of
modeling−−namely computerized simulation−−not because it is best but
because of its relevance in the context of this book.

Computer Simulation

Implementing a simulation as a computer program results in unsurpassed
flexibility; the malleability of the programming medium means that in
principle (acknowledging the difficulty of producing programs without bugs)
it is possible to refine, evolve, and extend a computer−based simulation in
ways that are difficult to match in any other medium.  Modern programming
environments also facilitate the development of modular data and program
code that (again, ideally) allow new simulations to be built using pieces of
existing ones.

Computer simulation can be divided into analytic and
discrete−state approaches.  The analytic approach brings the power of
mathematical analysis to bear on problems that can be understood or
approximated analytically.  For example, in cases where the reality being
modeled can be accurately described by a set of differential equations (as
in the flow of heat over a surface), analytic solutions of those equations
can be used to generate the time−dependent behavior required for simulation.

Though closed−form solutions are often mathematically elegant, this very
elegance may make them cryptic and incomprehensible.  By reducing reality to
an abstract mathematical relationship, they may obscure the understanding
that is being sought.  There are also cases in which analytic solutions are
known, but feasible means of computing these solutions are not available.
Nevertheless, analytic simulations are indispensable in many situations,
particularly when dealing with complex physical phenomena involving vast
numbers of relatively small and relatively similar entities whose individual
interactions are relatively simple and whose aggregate interactions obey the
"law of large numbers" (that is, permit statistical treatment).  In such
cases, analytic models often represent at least one form of "complete"
understanding.

There remains a large class of problems, however, that are not well enough
understood to be handled analytically, i.e., for which no formal
mathematical solutions exist.  These problems usually involve small to
large (but not "vast") collections of interacting entities each of whose
behavior is understood reasonably well in isolation and whose low−level,
pairwise interactions with each other are known but whose high−level, group
interactions are not well understood.  The strategy of discrete−state
simulation is to encode the known low−level interactions and "run" the
resulting simulation in the hope that the overall behavior of the system
will approximate that of its referent and (ideally) that higher−level
interactions will reveal themselves.

Time is dealt with in discrete−state simulations as a succession of separate
"states" in which entities interact; time advances discretely, either in
fixed "ticks" of a simulated clock (referred to as "time−based" simulation)
or whenever something significant happens (referred to as "event−based"
simulation).

Discrete−state simulation can be viewed as a last resort for modeling
certain kinds of intractable problems.  Its power lies in its ability to



reveal high−level patterns of interaction that cannot be recognized in other
ways.  It is often possible to enumerate and describe a collection of
entities and their immediate interactions without knowing where these
interactions lead; if this knowledge is encoded in a discrete−state
simulation and the behavior of the resulting model is observed, deeper
understanding will often emerge.

A Modeling Perspective on AI

Artificial Intelligence is one of the frontiers of computer science.  It has
traditionally been concerned with problems that have not yet yielded to
solution by "conventional" means.  The quest for computer intelligence has
two distinct motivations, which might be referred to (guardedly) as
"modeling" and "engineering".  The modeling approach seeks to model the way
we perform tasks that require intelligence; it therefore attempts to
identify problems that we recognize as requiring intelligence, and it seeks
to elucidate the mechanisms we employ in our own solutions of those
problems.  The engineering approach, on the other hand, is concerned with
producing systems that solve useful problems, regardless of whether their
solutions require "intelligence" or involve mechanisms parallel to our own.

The modeling approach to AI begins from a psychological or philosophical
departure point:  given a conceptual theory of intelligence, can we embody
that theory in a computer model?  Computer models make such theories
concrete, allowing them to be tested, validated, and refined.  The modeling
approach to AI therefore views the implementation of computerized models as
a key technique for understanding intelligence.  In addition, these models
often suggest novel mechanisms that may become part of the conceptual theory
itself.  It is this kind of feedback that has led to the popular conception
of the brain as a computer.  In addition, insights gained from AI models (as
often from their failures as from their successes) have contributed to major
theoretical revisions in areas ranging from linguistics to cognitive
psychology.

The engineering approach to AI has a different departure point:  since
computers are not organisms, why not use them to their best advantage to try
to solve useful problems, without worrying about whether they are solving
them the way we would?  This approach works in symbiosis with the modeling
approach; when a given model fails to work, sound engineering often suggests
a solution.  While these solutions are sometimes ad hoc, they may
reveal flaws in the conceptual theory that engendered the model, thereby
suggesting revisions to the theory.  The engineering approach to AI has the
sometimes frustrating attribute that, whenever it succeeds in solving a
problem (or even approaches success), its results tend to be appropriated
by "conventional" computer science or engineering, with the result that AI
receives no credit for the eventual solution.  This has occurred repeatedly
in AI’s history (examples include list processing, character recognition,
speech synthesis, and demons), contributing to the only partially facetious
adage that "AI never solves any problem−−by definition".

AI has made many contributions to computer science and software engineering.
It is arid to try to distinguish too sharply between what is AI and what is
not; at any given time there are a set of unsolved problems in computer
science to which AI has laid claim.  Often these problems are also attacked
from other quarters of computer science, and it is not always easy to assign
credit for the solutions that eventually emerge.  It is sufficient to note
that AI has had some part in solving−−or is currently attempting to solve−−a
number of problems that have direct bearing on simulation and modeling.  Of
particular relevance are the object−oriented programming paradigm, demons,
planning, search techniques, taxonomic inference via inheritance
hierarchies, forward and backward chaining, qualitative reasoning, truth
maintenance, proof procedures for formal logic, neural nets, and the
representation of spatial and temporal phenomena, uncertainty, plans, goals,
and beliefs.

The next section can only hint at some of the most important areas of
overlapping research and cross−fertilization between AI and simulation.

AI in Simulation and Simulation in AI

The term "simulation" is traditionally taken to mean only a very specific
kind of modeling.  Having gone to the trouble of encoding the requisite
knowledge for building a simulation, one should attempt to derive the



maximum benefit from this knowledge.  That is, in addition to "running" the
simulation to answer "What−if...?" questions, one should be able to
utilize the full range of inferencing, reasoning, and search methods that
are available in AI.  This broad view of simulation is referred to as
Knowledge−Based Simulation.

There is a well−entrenched tendency to view simulation narrowly as a way of
making predictions by running an encoded behavioral model.  The major impact
of AI on simulation should be to encourage simulation to make use of other
kinds of modeling as well:  the result will still be a phenomenological model
but one that can take full advantage of additional modeling techniques to
answer questions that are of interest to its users.  This natural, though
long−overdue, extension of simulation can be referred to as Beyond
"What−if...?".

Discrete−state simulation has derived great benefit from many of the
techniques developed in AI.  The object−oriented paradigm, though it first
appeared in Simula [8], owes its present state of refinement to AI language
efforts like Smalltalk [17] and ROSS [32].  The object−oriented approach to
discrete−state simulation has many advantages, despite its shortcomings
[41].  For example, the appropriate use of inheritance hierarchies (or
lattices) greatly simplifies the specification of a complex simulation,
producing highly comprehensible models [29].  Searching and planning
techniques developed in AI should make it feasible to simulate the
behavior of human decision makers in environments involving "command and
control", while backward chaining should help answer questions about how to
achieve a given result.  Techniques for representing goals and beliefs should
help build simulations that can explain the behavior of simulated
entities.

Analytic simulation has tended to look to mathematics rather than AI for its
methods, but here too there are possibilities on the horizon.  One example
is recent work at The RAND Corporation in sensitivity analysis (a sorely
neglected problem in simulation), which uses AI techniques to represent and
propagate sensitivity information through a computation.  This avoids the
need to recompute sensitivity for every nested function call whenever some
higher−level function is perturbed to probe its sensitivity to changes in
its parameters.  We also foresee the use of symbolic algebra programs like
REDUCE [20] to apply expert algebraic manipulation to analytic functions
within a simulation.

AI programs have a long history of using models as sources of internal
expertise.  An early example is Gelernter’s Geometry Machine [15] which
embedded a model of a geometry student’s diagram, and used a "diagram
computer" to test hypotheses against this internal diagram.  The Geometry
Machine’s stated motivation was to solve problems generally considered to
require intelligence; here the "engineering" approach converged with the
modeling approach in choosing a solution based on a model of how we
ourselves solve geometry problems: being inveterate modelers, we use a model
(i.e., a diagram).

Another classic example of an embedded model in an AI system is SOPHIE [5],
which taught electronic circuit diagnosis by means of an interactive dialog. 
In order to allow students to ask hypothetical questions (e.g., "What would
happen if I measured the voltage across points A and B?") SOPHIE used a
simulator of the electronic circuit being diagnosed.  Here the simulator was
treated as a source of expertise about electronic circuits. The AI program
that conducted the dialog with the student did not attempt to know all the
answers to all possible questions the user might ask; instead, it answered
those questions by consulting its internal model of reality, i.e., running
its embedded simulation.

It is generally acknowledged that in order to exhibit more than superficial
intelligence, AI systems must make use of "deep structures", or models of
reality like those described above.  Simple action−response rules can
produce programs that perform impressively up to a point, but beyond that
point there is no escaping the need to imbue programs with real
"understanding" of the world, at least within their domains.  The way to
provide such understanding is to endow a program with a model of the world
that it can use to answer a wide range of unanticipated questions arising
from its need to act (or reply to queries) appropriately in that world. 
These ideas are discussed further in the next section.



Knowledge−Based Simulation at The RAND Corporation

A number of research efforts are currently attempting to blend AI and
simulation in a new discipline called Knowledge−Based Simulation.  In
order to elaborate the ideas of the previous section, the following
describes our current research in this area at The RAND Corporation.

Artificial intelligence and simulation have been major areas of research at
RAND for many years [30].  The work of Newell, Shaw and Simon at RAND in the
1950s [36] was one of AI’s earliest successes and defined many areas that
continue to be focal points for AI research.  More recently RAND’s research
in expert systems produced the languages RITA [1,2] and ROSIE [26,45] as
well as several expert system applications (including LDS [51], TATR [6] and
SAL [38]).  Similarly, RAND’s long history of simulation research produced
the Simscript language [28] as well as both theoretical and experimental
results in game theory and monte carlo simulation.  RAND began applying AI
to simulation in the late 1970s and early 1980s.  The development of the
object−oriented ROSS language clearly demonstrated that AI could benefit
simulation technology.  The Knowledge−Based Simulation project continues
this tradition.

The goal of the KBSim project is to make simulations both more powerful and
more comprehensible by (1) allowing modelers to build, validate, evolve and
maintain more powerful and realistic simulations that model a wider range of
relevant phenomena, and (2) allowing users to interact with these
simulations in ways that provide deeper understanding of the phenomena being
modeled.  Making simulations more powerful requires extending the kinds of
modeling they can perform and the kinds of questions they can answer (as
discussed above).  Making simulations more comprehensible requires developing
techniques for what we call intelligent exploration and explanation,
i.e., allowing users to modify both the model and the course of events in a
simulation, and making the simulation explain its behavior in useful ways.
Our context is the object−oriented, discrete−state simulation of objects in
a geographical setting.

This research has spawned a number of distinct tasks, the first of which
involves reasoning about simulation behavior.  This includes being able to
ask goal−directed questions, questions about whether or how an initial state
can produce a desired result, questions about the possible values of
variables in a simulation, questions about the interactions of objects or
factors, questions about the goals of an object, and questions about why an
object performed an action.  The inability of current discrete−state
simulations to answer such questions derives from limitations in their
representational and inferential capabilities stemming from the fact that
knowledge is represented implicitly in procedural code and is therefore not
amenable to inference.  Support for reasoning requires representing the
behavior of objects in ways that allow the use of automated reasoning
techniques (like forward and backward chaining) and integrating these with
other forms of inference, such as those based on the use of object
taxonomies.

In addition to the explicit use of reasoning, it is important to allow
implicit reasoning based on multiple relations.  Complex simulations require
the representation of multi−dimensional relationships among objects, such as
"A is a−kind−of B", "A is a−part−of B", "A is in−control−of B", "A is
in−communication−with B", or "A is near B".  It is vital for the
simulation user to be able to define relations freely, examine the state of
the simulation in terms of these relations, and modify them dynamically.  Most
object−oriented systems support only minor variations of the "class−subclass"
(also called "IS−A" or "taxonomy") relation along with a corresponding
"inheritance" mechanism to maintain taxonomic relationships (i.e., specialized
inferential support for the class/subclass relation).  We are attempting to
provide a true multiple relation environment in which different kinds of
relations are supported by appropriate specialized inference mechanisms and to
provide a general facility to allow the simulation developer to define new
relations with appropriate inferential support.

In order to be comprehensible to users, simulations must make intelligent
use of highly interactive graphics interfaces.  These should allow:  graphic
querying of the simulation state; being able to roll the simulation back to
a previous state, change a parameter, and rerun the simulation; saving
multiple simulation states for later analysis and comparison; being able to
build or modify simulation scenarios graphically; and being able to build or



modify simulation objects graphically (e.g., defining and exercising new
behaviors graphically).  We have defined a highly interactive graphics
environment of this sort that emphasizes the ease of manipulating simulation
objects, minimizes redundant display updating, and facilitates animation of
sequences of events (i.e., "causal chains").  We are also investigating the
use of graphically interactive diagrams or pictorial representations of
relations, which users can display and edit graphically.

Sensitivity analysis is one of the great abandoned areas
of simulation.  Yet without it there is no guarantee that the results of a
simulation would not be drastically different if some small change were made
to some initial parameter.  Sensitivity analysis is also important for
indicating which parameter values are the most important to verify (by
real−world means) for a simulation to be valid and believable.

The straightforward approach to sensitivity analysis requires running a
simulation many times perturbing individual parameters to see how the
results differ.  This is prohibitively expensive in most cases, as a
consequence of which it is rarely done.  Our research seeks to provide a
means of computationally feasible sensitivity analysis in a simulation
environment, utilizing a new approach that propagates and combines the
sensitivities of composite functions through a computation.  Viewing a
simulation as a top level function that invokes many levels of nested
subfunctions, most of these invocations normally involve a relatively small
number of distinct subfunctions, each of which is called many times.  For
example, a sine function may be called thousands of times in computing the
geographical positions of objects.  Normally, perturbing a top level
parameter involves executing the top level function several times, each time
executing the nested sine function thousands of times.  Our approach instead
computes a representation of the sensitivity of the sine function the first
time it is executed, and propagates this sensitivity information through the
computation rather than recomputing it each time it is needed.

Another major shortcoming of current simulation models is their inability to
vary the level at which they are aggregated (also referred to as their
"resolution").  It is generally necessary to choose a desired level of
aggregation in advance and design a simulation around that level.  Changing
this level typically requires considerable reprogramming of the simulation;
changing it under user control or dynamically is generally unthinkable.  The
fact that the level of aggregation of a model gets "frozen in" early in its
design is a major impediment to the reusability of models and the utility of
simulation in general.  Users should be able to vary the level of
aggregation of a simulation and to indicate which aspects of the model are
of particular interest, running those aspects of the simulation
disaggregated while running peripheral aspects at higher levels of
aggregation.  Users should also be able to run highly aggregated
simulations to identify interesting cases and then examine those cases in
more detail by rerunning them disaggregated.  Our goal is to develop a
methodology for building simulations whose level of aggregation can be
varied either statically or dynamically, as appropriate to the user’s
purpose.  This requires mechanisms for representing "vertical slices" of
objects in an aggregation hierarchy and for allowing interactions between
objects at different levels of aggregation.  It is also necessary to address
problems of inconsistency that can arise between different levels:  that is,
running a simulation at an aggregated level should produce results that are
consistent with the results of running the same simulation at a
disaggregated level.

In order to model real−world environments that include human decision
makers, we are attempting to build simulations that embed models of
intelligent agents possessing varying degrees of awareness, authority,
initiative, intelligence, etc.  This also requires hierarchical planning so
that, at each level, plans will be translated into objectives for agents at
the next lower level.

Finally, there are a number of "pseudo−objects" or phenomena that are not
modeled well by the current object−oriented paradigm.  For example, terrain,
roads, rivers, and weather defy easy representation by conventional
object−oriented means.  These pseudo−objects seem to require representations
and manipulations that are different from those used for more compact
objects, either because they traverse or interpenetrate other objects
(without actually being "part" of them), or because they are best described
by continuous models (such as partial differential equations).  We are



exploring a number of AI techniques to represent such pseudo−objects and
their interactions.

The above gives a brief summary of our current research in this area.  The
wedding of AI and simulation is still in progress; its consummation promises
to be of great value to both fields of endeavor.

Summary and Conclusion

Modeling is one of the foundations of intelligence and is an essential
aspect of being human.  It is nothing short of the primal lever with which
we move the Earth to suit our needs.  However, the creation and use of
models is so instinctive that we rarely analyze it or question its
appropriateness.  This chapter has attempted to define modeling precisely in
order to provide a framework within which models can be compared and
evaluated according to the three criteria of reference, purpose and
cost−effectiveness.  This should make it possible to design and choose more
effective models, avoid inferior ones, recognize pseudo−models, and
acknowledge that the use of any model may sometimes be inappropriate.

Simulation is a powerful modeling strategy for understanding complex
phenomena.  Artificial Intelligence provides new techniques that will infuse
simulation with unprecedented power.  At the same time, simulation has a
great potential for contributing to AI, providing phenomenological models
that can be used by reasoning programs as a deep source of expertise about
the world.  Some of the most exciting potentials of this new marriage of
disciplines are exemplified by current research in Knowledge−Based
Simulation at The RAND Corporation.

It is apparent that the future of civilization depends, at least in part, on
our ability to devise new and more effective tools for making intelligent
decisions.  Whatever form these tools may take, they must necessarily be
based on appropriate models of ourselves and our reality.  It is perhaps not
too much to ask−−or at least to hope−−that the informed use of AI and
simulation may play a major role in producing these vital tools.  It is in
any case clear that current developments in this area will greatly enhance
the efficacy of simulation as a means of understanding the world.
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